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ABSTRACT

The multicomponent linear additive model is frequently used in

analytical chemistry for the analysis of several components in a single

sample. The pressure of unsuspected components in the mixture, which

affect the measured response, results in a volume dependent sample .

background. A method has been developed to test for the presence of

a background interferent during the quantitation step of a multicomponent

analysis. If a background is detected, quantitative estimates of the desired

analyte concentrations can be obtained by applying several chemically and .

physically meaningful constraints. Two distinct quantitation methods,

which are known as the perpendicular projection and the extreme vertex

projection techniques, have been proposed. -
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INTRODUCTION

The multicomponent linear additive model is often used by analytical

chemists in the analysis of mixture samples. In applying this model

to the analysis of a complex mixture, the analyst must make the assumption

that the measured response, for example the absorbance spectrum of a mixture

sample, is a function of only the known components in the sample. This

requires knowledge of not only the desired analytes but also all potential

interferents.

Least squares regression is perhaps the most frequently used method of

estimating the concentrations of several components in a mixture sample.

This method will yield the best estimates, in terms of smallest squared

errors, of the analyte concentrations provided calibration spectra for all

the sample components are included in the analysis. Warner and co-workers(l)

observed that least squares fitting techniques can be strongly affected by

not accounting for all the sample components. They proposed non-negative

least squares and linear programming as alternative methods if some of the

components are not known. Leggett(2) used non-negative least squares and

simplex optimization to overcome the problem of negative molar absorptivities

or concentrations. Gayle and Bennett(3) concluded that if the incorrect

model was used, for example necessary calibration spectra were missing during

the quantitation step, conventional least squares, non-negative least

squares, and linear programming will all yield incorrect results. Haaland

and Easterling(4) approached the problem of unknown components in a mixture
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sample by selecting only the spectral regions which provided the best

L agreement to the available calibration spectra.

The method of self-modeling curve resolution proposed by Lawton and

Sylvestre(5) and the similar approach of Martens and co-workers(6,7) are

based on the chemically meaningful assumptions that both response

* measurements and analyte concentrations must be non-negative. This approach

* has the advantage of not requiring that the analyst know the pure component

spectra nor the actual number of components which influence the measured

mixture response. However, applying curve resolution directly to the problem

- of quantitating several known analytes in the presence of unsuspected

interferents does not make use of the known calibration spectra of the

* desired analytes. A hybrid approach combining these different techniques has

* been developed and is the subject of the remainder of this work. This

approach assumes all but one of the pure component spectra are known by the

* analyst. The one unknown spectrum is the spectrum of the composite sample

* background, and includes all of the sample components not identified by the

analyst.

* THEORY

The mathematical model used with this hybrid approach is the

multicomponent linear additive model. The response of the mixture is

* measured at P different sensors, e.g. wavelengths. At each sensor, the

* response can be expressed as

N T
r cik1 1 + ck 1  for all 1-1 ....P (1)
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where r1 is the response of the 1-th sensor due to the N known analytes

present at concentrations, ci, and T interferents present at concentrations,

cj, with sensitivity coefficients, kil and kl respectively. Neither the

concentrations nor the spectra, equivalently the P sensitivity coefficients,

of the T interferents are known. Rowever their composite effect on the

response of the 1-th sensor can be defined as

T
f , c.. for all 1-1 ... P (2)

By a simple substitution, equation 1 can be written as

N

r " ciki1 + for all l-1,...P (3)

where f is the sample or volume dependent background. The model may also

be expressed in vector notation as

V -K Vf(

where r is a column vector with length P containing the measured mixture

response, c is a column vector with length N of unknown analyte

concentrations, f is a column vector of length P containing the background

contribution, and K is the N x P matrix of sensitivity coefficients. The

only assumptions made with this model are that each sensor responds linearly

to all of the components over the concentration range of interest and that

no constant or instrumental background is present.

The approach to be described is a quantitation method only. It does

not address the question of calibration. It is assumed the matrix K has

been obtained by an acceptable method. In general, if matrix effects are

absent, then any of the approaches suggested by Kaiser(S) will be
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satisfactory. If matrix effects are present; then standard additions or the

GSAM(9) approach should be used. It should be noted that if a sample

background is present during the calibration step, then the correct K matrix

will be obtained if a method based on differential responses, i.e. standard

additions, is used. In order to statistically test for the presence of

interferents in the mixture spectrum, it is further assumed that the

uncertainities in each of the sensitivity coefficients are known. This

assumption places no limitation upon the analysis aside from requiring the

analyst to perform replication during the calibration step.

An attempt to solve equation 4 by direct application of least squares

regression is destined to fail. The required solution for the concentration

vector c will yield

C- (r - f')K'(KK' (5)

Since the vector of background responses, f, is unknown, an infinite number

of solutions for the concentration vector, c, are obtained. Only if all

elements of f are known or they are all identically equal to zero does a

unique solution for c exist. Assuming f is exactly the null vector is

equivalent to assuming a sample background does not exist.

In the present model, each pure component spectrum and mixture spectrum

can be considered as a single point in a P-dimensional measurement space,
where each axis in this space represents the response measured with a single

sensor. Assuming that all calibration and mixture spectra are normalized to

constant area, any mixture spectrum composed of only the N desired analytes

is a linear combination of the N pure component spectra, and since any N non-
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colinear points are sufficient to define an (N-1)-dimensional hyperplane, all

mixtures composed of only these analytes must lie on the same (N-1)-

dimensional hyperplane. Additionally, since the N pure spectra are linear

combinations of themselves, they must also lie on this hyperplane. A mixture

spectrum which is composed of some or all of the N desired analytes plus

normally
one or more interfering components willfnot iall on this (N-2 )-dimensional

hyperplane. The exception occurs if the composite response due to the interfer-

ents can be expressed as a linear combination of the desired analytes. Therefore,

the problem of identifying if interferences are present is equivalent to deter-

mining if the point representing the measured response of the mixture lies on or

off the (N-1)-dimensional hyperplane defined by the pure analyte spectra.

In actual practice, all experimental measurements, both those made

during the calibration step and those made when obtaining the spectrum of the

mixture, will be effected by noise. The noise

causes a degree of 'thickness' to the (N-)-dimensional model. The problem

of determining if a particular mixture spectrum contains unsuspected

interferents is ultimately a statistical question. This problem can be

stated as: Given a mixture point, whose location is known with some .-Z

uncertainity, and a (N-l)-dimensional hyperplane, whose location is also

somewhat uncertain, is the distance from the mixture point to the hyperplane

defined by the pure component spectra statistically significant?

Page_5
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Test for Unsuspected Components. Assume that the calibration matrix, K, has

been obtained and the analyst wishes to quantitate a measured mixture

spectrum, r, but is unwilling to assume that a sample background is absent.

Each row of the K matrix is in effect the spectrum, composed of P points, of a

single analyte. Define a new matrix X, such that the first N rows of X are exactly

the elements of the matrix K and the N+Ist row of X contains the measured reponse

of the mixture. Next, define an analogous matrix U, such that each element, uij,

of U contains a measure, e.g. one standard deviation, of the uncertainty in the

corresponding element, xij, of the matrix X. The first N rows are simply the

uncertainties in the sensitivity coefficients, i.e. the P point spectra, and the

N+lst row contains the uncertainties in the measured mixture response. The

dimensions of X and U are N+I by P columns.

The first step is to normalize X, such that each s-ectrum, i.e. each

row, has the same area. Since the elements of X represent responses, e.g.

absorbances, of a chemical component, all elements in X are by definition

equal to or greater than zero. Normalization of the response and uncertainty

matrices is accomplished such that the sum of the responses in each spectrum

is equal to one.

- x .. for all i-l, ... N+l (6)
a -i

x.. -x.. /a. for all i,j (7)
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The uncertainty matrix must be normalized using the same factor to prevent

altering the relative uncertainty of the spectra in the P-dimensional

measurement space.

u..-u.. / a for all i,j (9)

Next, the data matrix is centered by subtraction of the mean response of

each sensor for the N desired analytes.

N
R - (1/N)ixij for all j-l,...P (9)

x.. -x.. -2. for all i,j (10)1) 13

Since mean centering represents a translation in the P-dimensional measurement

space, it is not necessary to perform this operation on the uncertainty matrix.

The second moment matrix, XIX/N, is then calculated using only the

first N rows of the scaled, centered data matrix, X. Since the centering

was based on only the pure component spectra and the second moment matrix

was calculated using only these spectra, the rank of this moment matrix

cannot be greater than N-1. Diagonalization of this moment matrix gives

rise to the matrices E and V, such that

(X'X/N) V - v (11)

where V is a P x P matrix containing the eigenvectors of the moment matrix

and E is a diagonal matrix containing the P eigenvalues. This modified

moment matrix results in N-1 non-zero eigenvectors, which are sufficient

to exactly reproduce the N pure component spectra.
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The scaled and cwtereJ mixture spectrum, Xg. 1 , is projected by

%N+l '+ v  (12)

where V is the P x (N-i) matrix of eigenvectors

of the modified moment matrix. The mixture spectrum is

then predicted from the N-I eigenvectors and the just calculated factor -

scores by

k+1= V SN+1 (13)

Ip

The difference between the predicted and actual mixture representations in

the P-dimensional measurement space is calculated as

h ,N+ + (14)

where h is the vector of residual differences observed. The sums of the

squareQ elements of the original mixture spectrum and the residuals are .

calculated as

sm, '+lgj

PPA2 i'"

Sr= 1i +lj (16)

These values are compared and if the residual vector is found to contain

more than 1 x 10-3 % of the original variance present in the mixture

spectrum, then the residual vector, h, is normalized to a length of one and

augmented onto the projection matrix, V, as
o

1/2
v h (s for all i=l,...P (17)jN j r
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where v N represents the j-th element in the Nth column of V. This threshold may

be adjusted. Its purpose is to avoid selecting a residual vector arising

solely from computational round off error as the final rotation vector. If

the residual vector is smaller than this test value, then the mixture

spectrum must be a linear combination of the N pure component spectra, hence

the sample background is absent. The matrix V is no longer a matrix of

eigenvectors. However, the columns of V are still orthogonal and V may be

used as a rotation matrix. The P x N rotation matrix V is then used to

project the entire scaled, centered data matrix, X, from the P-dimensional

measurement space into a N-dimensional feature space. If S is defined to be

the coordinates of X in the projected space, then S is given by

S = xV (18)

the adjusted

where X and V are the data matrix and~eigenvector matrix defined above.

The first N rows of S contain the factor scores representing the pure

component spectra in the N-dimensional feature space. The N+lst row of S

is the rotated representation of the mixture spectrum. The uncertainty in

the factor scores can be obtained by an identical rotation performed on the

matrix U, which yields

W Uv (19)

where W is the uncertainty matrix in the N-dimensional eigenvector space.

The problem of measuring the distance from the mixture spectrum to the

(N-1)-dimensional hyperplane containing all mixtures composed of the N

desired analytes has been reduced from a geometrical problem in P space to a

somewhat simpler problem in the smaller dimensional N space.
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The statistical problem of determining if the distance from the ideal mixture

model, defined by the hyperplane, to the measured mixture response is significant

requires evaluation of the uncertainty in the various measurements. The

advantage of using this particular rotation is apparent when the background

test is attempted. The (N-l)-dimensional hyperplane defined by the N pure

component spectra is now also defined by the first N-I vectors of the

rotation matrix. The projection axis for the orthogonal projection of the

mixture spectrum onto the hyperplane defined by the calibration standards is

simply the Nth vector in the rotation matrix, V. The distance from the

mixture spectrum to its projected image is obtained directly from the factor

score for the mixture spectrum on the Nth projection vector, which is simply

the Nth element in the N+ist row of the matrix S. Since the distance from

the mixture to the ideal model along each of the original P measurement axes

contributes positively to the observed distance along the final rotation

Page 10
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vector in the N dimensional feature space, it is necessary to scale the

observed distance by the square root of the number of sensors employed. The

scaled distance is observed distance divided by the square root of P.

In this situation, the scaled distance between the mixture point ,

and the hyperplane is the difference to be tested with respect to the

uncertainty in the location of the mixture point and the uncertainity in the

hyperplane directed along the measurement axis. In order to use a t-test 4

for the comparison of two mean values, the analyst must know the difference

between the mean values, the standard deviations of the means, and the

number of measurements which have been made. In the current problem,

careful consideration of the available degrees of freedom leads to t

conclusion that the number of degrees of freedom associated with each

spectrum is approximately proportional to the number of sensors employed.

Making measurements with a large number of sensors allows the normal distri-

bution, instead of the t-distribution, to be used without causing the intro-

duction of a large error into the statistical background test. The two-siede

Normal test for comparison of two mean values is given by Nattrella (10).

The test statistic, u, is calculated as

(2  2 ) /
U = a A/ + (a /n) (20)1-a A A B

where z is the value of the Normal distribution for a selected
1-(a/2)

probability, a, aA and aB are the uncertainties in the locations of the

mixture point and the model, i.e. the projected image of the mixture, and

Page 11
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* nA and nB are the number of mixture and calibration spectra measured,

* respectively. The test statistic, u, is calculated based on an assumption

that the noise is randomly distributed. However, the rotation operator

which has been described will always select the final rotation vector to

maximize the correlation betwveen the vector and the residual response of

the mixture not fitted by the calibration spectra. If the observed mixture

* spectrum contained only the desired analytes and random noise, a randomly

* selected final rotation vector would be expected to span all of the

residual variance for a few sensors, some of the residual variance for most

of the sensors, and none of the residual variance for some of the sensors.

* Overall, this vector would span only a portion of the residual variance of

the mixture arising from random noise in the analytical measurement. on

the average, half of the residual variance would be explained by a randomly

* selected final rotation vector. The rotation method used maximized the

correlation between the final rotation vector and the residual variance.-

* Therefore, this vector accounts for all of the residual variance in the

mixture spectrum. This causes the scaled distance used in the background

test to be twice as large as would be expected. if the scaled distance

between the mixture point and the model, defined by the hyperplane, is

*greater than two times u; then the mixture is significantly different than

the model, i.e. a sample background is present.

Quantitation. Assuming that an unsuspected spectral background has been

- uncovered by this approach, the question then arises of selecting the best

- method for obtaining estimates of the desired analyte concentrations. it

was shown earlier that if the background spectrum is not known, then direct

quantitation is not possible.
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The general problem of quantitating an N-component mixture sample,

which has been shown to contain an unidentified background component or

composite background, can be most easily understood by first considering

the simplier problem of quantitating a 3-component mixture, e.g. two

analytes plus background. In this case, the two pure analyte spectra are

initially present in the calibration matrix, K. Therefore, when the data

matrix X is formed, it will have three rows and P columns. After

normalizing each row to constant area and mean centering, the three

spectra are projected from the P-dimensional measurement space into a 2-

dimensional feature space. The orthogonal rotation method which has been

described will result in a matrix S of the form

S= s (21)
212s31 s32

where sll = -s21. The points (s11 ,0) and (s21,0) are the locations of the

two scaled pure analyte spectra. Proper quantitation of the two desired

analytes in the mixture spectrum requires that an estimate of the location

of the background spectrum be made. Two additional constraints derived from

the methods used for multicomponent resolution can be applied(5). These

assumptions are: first, only non-negative responses are allowed; and second,

only non-negative quantities of each component are permitted.

The first constraint, non-negative responses, can be used to form a

bounded region within which any physically meaningful spectrum, including

the pure background, must be located. Since each spectrum has been centered
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prior to being projected, the non-negativity constraint requires c and c

be selected such that

X+ 2v) C 0 for all j-l...P (22)

where 4E and f2 are the scalars which define the location of an arbitary

allowed spectrum in the 2-dimensional space. The shape of the entire feasible

region can be obtained by recognizing that equation 22 actually provides P

separate inequality relationships, each of which defines an allowed half plane.

The intersection of these P half planes is the allowed region within which any

non-negative spectrum must fall.

The second constraint obtained from multicomponent resolution, non-

negative quantities of each component, requires that the observed mixture

spectrum be a linear combination of the pure analyte and background

spectra. Since each of the spectra have been normalized to constant area,

this restriction implies that the mixture spectrum must lie inside the

triangle defined by the two analyte spectra and the background spectrum.

The region of the 2-dimensional feature space which satisfies both of these

constraints is shown in figure 1.

Page 14
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Quantitative resolution of the mixture spectrum into the response due

to each of the pure analytes and the response due to the background can be

accomplished by an extension of the method described by Sharaf and

Kowalski(11,12) for quantitating two component curve resolution mixtures.

The matrix S contains the locations of the two pure analytes and the --

mixture points in 2-space. If these points are labelled as A, B, and X for

analyte 1, analyte 2, and the mixture point, respectively, then A-(s 1 1 0) ,

B ,(s20), and X-(s3 1,s3 2). Assume the true spectrum of the background is

at point C, where C-(soils 0 2 ). Now, define X, as the image of X projected

onto the line segment AB along axis XC, as shown in figure 2. The

projected image, X', is located at ((s o-S S)/(s -s ),0).
30232 01 02 32

For a given normalized spectrum, xi, the coordinates, (siS of the point
ill i2 ofhp

representing the mixture spectrum are given by

si8 (x. - ) vx  (23) ....

5. -(- - x)V
s i2 (xi x) v2 (24)

Since the two pure spectra, the background spectrum, and the mixture

spectrum have all been normalized to constant area, the mixture spectrum can

be expressed as a linear combination of the pure component and background

spectra. If a, R, and t are defined as the fraction of the mixture spectrum

due to the background, analyte 1, and analyte 2, respectively, then the

following relationships must hold,

x 3 a xo + x + y) (25)3 1-

a + + 7 -(26)
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where x0 is the spectrum of the pure background. Additionally, any

spectrum must also satisfy

Z- + av 1V + i2 (27)

Rearrangement of equations 25, 26, and 27 results in

a 3 1vl + 832V2 - a1+ + " 4 + (42 +'B 2 +'Y2 ) (28)

This vector equation implies that these relationships must also hold,

s 3 1 -a Sol 1+6_ +al l (29)

and

s32 ='aO2 +2 'L2 +'Y 2  (30)

Equation 27 placed no restrictions on the location of the points

representing the pure component spectra. Recall that the rotation matrix

employed resulted in the matrix S having a form such that s2 1 --l and s12

S22 . This allows equations 29 and 30 to be rewritten as

s3l =as 0 1 + 2 l - l (31)

and

s8 o (32) -
32 s0 2 (

From equation 32, it is immediately apparent that a, the fraction of the

mixture response due to the background component, is simply given as

a = s32 / So2 (33)

Page 16
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Solution of the system of three equations in three unknowns represented by

equations 26, 31, and 32, results in

B02(11+S31) - S3 2 (S 0 1 +S 1 1)
' 2s(34)

02 11
.e- SoS- i?

8 ( --- a (S i~- 3502 11- 31 -32 -~2 02Sll (35 ) - :-

A modified approach may also be used for calculating the fractional

responses. Since the points X, X', and C are colinear, it can easily be

shown that

a ,X (36)
(CC,X>

where <i,j> represents the euclidean distance between the points i and j.

Any point, including X1, which lies along the line segment AB in figure 2

can be considered as two component mixtures composed of only the analytes 1

and 2. Sharaf and Kowalski(14) proved the fraction of the mixture response

due to a single component was related to the relative positions of the

mixture and the two pure component spectra. In this situation, a portion of

the mixture response has already been found to be caused by the background

component, therefore the line segment AB represents the fraction of the

remaining response due to the two desired analytes A and B.

If X' is selected by the method described above, then assume

BX' (37)<A,B>
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where 1-a is the fraction of the mixture response not due to the background

component. After substitution of equation 33 or 36 into this relationship,

calculation of the distances based on the known positions of A, B, and X'

yields

(s +- s (a +sz0- __2 ( s1 ( 38 )

2 s 0 2 1 1

This is exactly the value obtained for by the original derivation.

Quantitative resolution can now be accomplished. The concentration of analyte 1,

expressed relative to the concentration of the calibration standard and corrected

for the background interferent, is given by

6 a,, I  (39)
fraction analyte 1 a (39)

where a and a+ 1 are the original areas of the calibration spectrum of

analyte 1 and the area of the mixture spectrum, respectively. The

concentration of analyte 2 is found by an analogous relationship.

fraction analyte 2 - (40)
a2

The quantitation described assumed that the

location of the true background spectrum, C, was known. As is the case with

other forms of multicomponent resolution, the exact location of C is not

known, only a bounded region which must contain C is available. Conceivably,

the location of the pure background spectrum might be the same as the --

location of the mixture spectrum, this situation would imply that the

Page 18



observed mixture was composed of entirely background and all of the desired

analytes were absent. At the other extreme, the background spectrum might be

I as far from the mixture spectrum as possible. In the absence of any further

information regarding the background, two diff erent projection methods have

been developed: perpendicular projection and extreme vertex projection.

I Neither of these projection methods will totally correct for the effects of

the background components, however they do provide a method of estimating the

magnitude of the background response. These projection methods are

illustrated in figure 3.

The perpendicular projection method is based on an assumption that the

spectrum of the background is approximately equally similar to both of the

pure component spectra. This method will minimize the distance between the

point representing the mixture spectrum and its projected image. The point

j used as an estimate of the pure background spectrum is obtained from the

* intersection of the perpendicular projection axis and the outer bound, i.e.

the non-negative response constraint.

The extreme vertex projection method is based on an assumption that the

* spectrum of the mixture is primarily due to the desired analytes. This

projection minimizes the estimate of the fraction of the mixture response

resulting from the background component. The point used as an estimate of

* the pure background is selected to minimize the a calculated by equation 36.

It can easily be shown that this point must occur at a vertex of the

constraint polygon. The term, extreme vertex projection, selected when this

method was first developed, is not precisely correct since the most distance

- vertex from the mixture point is frequently but not necessarily always the

vertex which minimizes a.
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The two methods discussed for estimating the fraction of the mixture response

due to the background have been described in detail for the case of a two analyte

plus background mixture. The algorithms may be directly extended into higher

dimensions. The perpendicular projection and extreme vertex projection methods

retain the same physical interpretations in higher dimensional situations.

After estimation of the location of the background spectrum, the quantitation of

an N component mixture can be accomplished by an extension of the geometrical

approach described in equations 36 and 37.

EXPERIMENTAL SECTION

The absorption of visible or ultraviolet radiation, as described by the

Beer-Lambert law, is a common analytical application of the multicomponent

linear additive model. Two separate experimental systems were investigated.

All computations and simulated mixture experiments were performed on the

Department of Chemistry VAX 11/780 computer.

UD

Metal ions in aqueous solution. Visible absorption spectra of four

calibration and eight mixture samples were recorded every 2.0 nm from 350 to

850 nm with a Kontron UVIKON model 820 uv/visible spectrophotometer equipped

with a Kontron model 48 thermoprinter. All subsequent data analysis was

accomplished using a subset of 20 wavelengths selected every 24 nm from 850

to 394 nm. Stock solutions were prepared by dissolving the appropriate metal

salt in 4% nitric acid. Calibration standards and synthetic mixture samples

were prepared by dilution of the stock solutions. The metal salts used and

the concentrations of the corresponding calibration standards, in grams of
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salt per milliliter of solution, were: Cr2(0 4)3 (S H0, 6.275X103 g/mL;
-2 -2

Ni(NO3 ) 2 6H20, 4.391x10 g/mL; Co(NO3 )2 6H20, 4.384x10 g/mL; and Cu(N03 )2
-2

2 1/2H20, 8.757x10 g/mL. The compositions of the mixture samples are given

in Table I. Each synthetic mixture contained equal amounts of chromium and

nickle with varying amounts of cobalt and/or copper added to simulate the

background component.

Simulated mixtures of RNA constituents. Two different sets of RNA mixture

absorption spectra were simulated using 18 analytical wavelengths spaced

every 4 rm from 220 to 288 nm. The first data set, used for evaluation of

noise and replication effects, consisted of 120 mixture samples. Each

mixture was composed of equal amounts of adenylic and cytidylic acid, to

which was added a selected amount of guanylic acid as a simulated background

component. The background component was added so that the fraction of the

mixture response due to the background ranged from zero to 8.0% at ten

selected levels: 0.0, 0.2, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0, and 8.0%. The . -

calibration spectra and the mixture spectrum were obtained by averaging

either 5, 10, or 20 simLiated replicate measurements. Each individual

measurement was perturbed by adding random noise at one of four selected

levels. The noise was modelled as a normal distribution with a mean of zero

and relative standard deviation of 0.5, 1.0, 2.0, or 4.0% RSD. The standard

deviation calculated from the simulated replicate experimental measurements

was used to estimate the experimental measurement uncertainty. A second data

set, used to evaluate the effects of varying the relative amounts of each

analyte and the amount and identity of the interfering background

constituent, consisted of 210 mixture samples. All of the calibration and

mixture spectra in the second data set were the average of five replicate
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measurements to which 1.0% RSD noise was added. The 210 mixture samples were

further subdivided into six groups of 35 samples each, which varied in the

identity of the two components included as desired analytes and the component

selected to act as the background component. The compounds comprising these

six groups are shown in Table l. Within each group of 35 mixtures, the two

analytes were present in seven different quantities relative to each other.

These levels ranged from ten units of analyte one per unit of analyte two, to

one unit of analyte one per ten units of analyte two: 10:1, 5:1, 2:1, 1:1,

1:2, 1:5, and 1:10. At each of these levels the fraction of the response due

to the background component was varied in five steps: 0.5, 1.0, 2.0, 4.0, and

8.0%. Each of the 330 simulated experiments were repeated twenty times. The

results for the twenty set of estimated analyte concentrations were averaged.

RESULTS AND DISCUSSION

Ths objective of the aqueous metal ion experiment was two-fold: first,

to determine if the presence of a simulated background component could be

detected; and second, to evaluate the performance of the two projection

methods in correcting for the background response. The spectra of the

calibration solutions and the mixture samples are shown in figures 4 and 5.

Each mixture spectrum, except mixture number 1, is dependent not only on the

chromium and nickel analytes but also the added background constituent. It ,.

would be difficult if not impossible for the analyst to determine which

mixtures were not adequately represented by the two component model by

observing the mixture spectrum alone. The eight mixture samples were then

quantitated by three methods: ordinary least squares regression, and rotation

from a 20-dimensional measurement space to a 2-dimensional feature space
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followed by the perpendicular projection and extreme vertex projection

techniques. The results obtained are summarized in Table N. As expected,

ordinary least squares regression gives no indication of the presence of the

background component and results in estimated concentrations which are

significantly in error. Comparing the ordinary least squares results for

successive mixtures indicates that the errors in the concentration estimates

appear to be correlated. Additionally, the errors appear to be dependent on

the identity, consequently also the spectrum, of the background interferent.

In mixtures 2-4, where cobalt is the background component, the chromium

estimate is always high and the nickel estimate is always low. When copper

was added as an interferent, e.g. mixtures 5 and 6, the reverse occurs, the

chromium estimate is low and the nickel is biased high. In mixture 8, in

which both copper and cobalt were added, the estimates for both expected

analytes are too high indicating that the ordinary least squares method may

overestimate both analytes due to its inability to assign a portion of the

total response to the background component. There was some improvement in

the results obtained when the two projection methods were used. The

perpendicular projection method performed best for mixtures 7 and 8. In

these mixtures, which contained both added cobalt and copper, the background

response affected almost the entire spectral region. Quantitation of

mixtures 2-4 and 5-6, which contained either added cobalt or added copper,

was not as accurate. This was postulated to be caused by the fact that the

spectral background was affecting only a portion of the mixture spectrum,

hence the assumption underlying the perpendicular projection method that the

background is about equally similar to both analytes is in error. The

" extreme vertex projection appeared to perform well for all eight mixture

samples. This can be explained by recognizing that the pure spectra of these
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four metal ions are fairly unique. For each metal there is a spectral region

in which that metal ion has the dominant effect on the response. Because of

these unique spectral regions the two dimensional representations of the

metal ion spectra are found close to the outer bound.

Zscheile and co-workers(13) used four RNA constituents to evaluate the

instability of the solution obtained for three and four component mixtures by

ordinary least squares regression. More recently, Kalivas(14) performed

simulated GSAM experiments using these four compounds. Zscheile et al.

observed that the quantitative results obtained for a three component mixture

of adenylic, cytidylic, and guanylic acids were markedly better than the

results obtained for a four compontent mixture composed of the three above

compounds and uridylic acid. They postulated that this improvement was due

to the close linear relationship between the absorption spectra of adenylic

and uridylic acids. Simulated experiments were performed using these

compounds in order to: first, determine the effects of the measurement noise

and measurement replication on the detectability of a simulated background

component; second, evaluate the effect of the uniqueness of the background

response on its detectability; and third, evaluate the successfulness of the

perpendicular and extreme vertex projection methods over a wide range of - -

mixture samples.

Simulated Data Set 1. Figure 6 illustrates the distance in the 2-dimensional

feature space from the point representing the mixture spectrum to the line

* segment drawn between the two pure analyte spectra, representing the ideal

. two component model, as a function of the percent added background. The

measured distance, e.g. average score of the mixture on the second rotation
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vector, was found to be related to the amount of background present. When

* the percentage of the response due to the background component was greater

than approximately twice the measurement noise, this distance was linearly

related to the amount of background present. At background levels below

* about one half of the measurement noise, the distance appeared to be

virtually independent of the added background. The background level at which

* the departure from linearity was observed depended not only on the

measurement noise but it also depended on the number of simulated replicate

measurements. in all 120 mixtures, the uncertainty in the position of the

ideal two component model, calculated from the estimated uncertainties in the

calibration spectra, along the axis of the second rotation vector was found

to depend on both the measurement noise and the number of replicate

measurements. For simulated mixtures obtained from 5 replicate measurements,

* the added background is not detected until the percentage of the response due

to the background is greater than two times the noise level. Simulated

mixtures of 10 replicate measurements allow detection of the noise at twice

the noise level. If 20 replicate measurements are made, a background

component with a response as low as one half of the noise level may be

success fully detected.

Simulated Data Set 2. The average errors in the estimated quantities of

* analytes 1 and 2 for the entire set of 210 simulation mixtures and three

* subsets; by compound group, by relative amounts of analytes, and by amount of

background added, are summarized in Table I7. Over all 210 mixtures the

perpendicular projection method provided the lowest average error, the next

* best results were obtained using the extreme vertex projection technique, and

the poorest results were obtained from ordinary least squares regression. No
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underlying relationship could be distinquished which related the magnitude of

the errors in the analyte estimates to the correlation between the two

analyte spectra or to correlation between the analyte and background spectra,

i.e. no clear compound group effect was evident for the six analyte-

background combinations attempted. It was noted however, the relative

performance of the three quantitation methods was consistent. For example,

compound group B, which yielded the best results by ordinary least squares

regression, also yielded the best results for the two projection methods.

The poorest results for all three methods occured with compound group A. For

all three quantitation methods, the summed percentage error for the two

analytes was larger for the mixtures of unequal amounts of analytes, e.g.

10:1 or 1:10, than for mixtures of near equal amounts. In mixtures composed

of unequal amounts of analytes, the larger percentage error generally

corresponded to the analyte present in the smaller amount. For all levels of

added background, the errors obtained from ordinary least squares regression

were larger and more biased high tham the corresponding perpendicular or

extreme vertex projections. This was expected since the two projection

methods subtract a portion of the initial response prior to quantitation of

the two analytes. While in many cases the improvement was easily observed,

the overall errors with the perpendicular projection or the extreme vertex

projection are smaller but still significant. The perpendicular projection

method provided better results than the extreme vertex projection method if

more than 1.0% background was present. For mixtures containing 0.5 or 1.0%

background, extreme vertex projection gave slightly better results. Since

the noise level in the second data set was fixed at 1% for all of the

mixtures, the first data set, which contained four different noise levels,

was reexamined in order to determine whether the shift in the projection
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method providing the most accurate results was related to the noise level.

Table Y shows the results for the same nine mixtures taken from the first

data set at four different noise levels. This data substantiates the

conclusion that the perpendicular projection method is more accurate if the

percentage of the response due to the background is greater than the percent

measurement noise. The extreme vertex projection method provides more

* accurate results if the percent background response is less than the noise

level. This occurs because in cases where the background is less than the

noise, the distance from the mixture point to the ideal model, as shown in

figure 6, is independent of the background response and either projection

method is over correcting for the background response. The extreme vertex

projection method is designed to minimize the fraction of the total response

due to the background component, hence in this situation it over corrects by

the least amount and provides slightly better results.

The initial objectives of this investigation were two-fold. First, to

.* develop a method which would provide the analyst with a means of detecting

the presence of unsuspected interferents during a multicomponent analysis.

-" Second, to provide a means of obtaining estimates of the desired analyte

concentrations if an unsuspected interferent was found. The methods which

-have been proposed have combined approaches based on multicomponent

* calibration, quantitation, and resolution methods.

The simulated experimental data collected for mixtures of RNA

• constituents indicate that a background test based on estimating the model

uncertainty from the measurement error can be used to test for the presence

- of unsuspected interferents during a multicomponent analysis. Figure 6
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suggests an overall limit to the detectability of background interferents.

These results imply that the level at which a background response can be

detected depends on the noise and the number of replicate measurements.

Simulations performed with higher levels of noise, e.g. 2.0 and 4.0% RSD,

illustrate the problems caused by a small number of replicate measurements. """

The model uncertainty in the 2-dimensional feature space decreases noticably

when the number of replicate measurements is increased from 5 to 10 and

finally to 20 repetitions.

Over a wide range of samples the perpendicular projection method

provided more accurate results than ordinary least squares regression. The

extreme vertex projection method also gave improved results, but unless the

background components posessed unique spectral features this method did not

perform as well as the perpendicular projection approach. Recalling that the

perpendicular projection method was based on the assumption that the L

background was approximately equally similar to each of the desired analyte

spectra may allow a further improvement in this method. The individual

sensor loadings into the perpendicular projection axis, equivalently the L

final rotation vector, indicates the sensors which are the most highly

correlated with those features of the mixture not fitted by the calibration

spectra. If the analysis is overdetermined with respect to the number of

sensors employed, then elimination of those sensors which load most strongly

into the final rotation vector may result in decreasing the overall effect of

the background components on the mixture response. This suggests an

additional criteria which might be useful for optimizing the sensor selection

in a multicomponent analysis. While both of these two quantitation

approaches provided improved results, significant errors may still occur.
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The problem of background detection increases as more known analytes are present

due to the increased likelihood that the background can be modeled as a linear

combination of the analytes. These difficulties imply identification of all

sample components, both desired analytes and interferents, affecting the measured

response is still a worthwhile goal for obtaining the most accurate analytical

results.
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Table 72 Concentration of individual metal ions, expressed in
terms of amounts relative to the corresponding calibration
sample, in a mixture samples used for visible absorption
speetrophotometry.

Mixture Cr Ni Co CU

1 1.00 0.50 0.00 0.00

2 1.00 0.50 0.10 0.00

3 1.00 0.50 0.20 0.00

4 1.00 0.50 0.40 0.00

5 1.00 0.50 0.00 0.10

6 1.00 0.50 0.00 0.20

7 1.00 0.50 0.10 0.20

8 1.00 0.50 0.20 0.10
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Table f: Six groups comprising the second simulated RNA mixture

data set.

Group Analyte 1 Analyte 2 Background

A Adenylic Guanylic Cytidylic

IB Adenylic Cytidylic Guanylic

C Cytidylic Guanylic Adenylic

D Adenylic Guanylic Uridylic

E Adenylic Uridylic Guanylic

F Cytidylic Guanylic Uridylic
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Table Iff: Amounts of Chromium and Nickel found in the mixture
samples by quantitation using ordinary least squares(OLS),
perpendicular proj ection( PP), and the extreme vertex
projection(EVP) methods. In all cases the correct amounts of
chromium and nickel are 1.000 and 0.50.0 units, respectively.

Mixture OLS PP EVp

1 Cr 1.000 0.992 0.995
Ni 0.504 0.500 0.501

2 Cr 1.098 1.039 1.023
Ni 0.482 0.463 0.501

a3 Cr 1.192 1.069 1.035
Ni 0.458 0.425 0.504

4 Cr 1.398 1.138 1.078
Ni 0.410 0.367 0.506

5 Cr 0.930 0.831 1.017
Ni 0.640 0.568 0.503

6 Cr 0.834 0.695 1.004
Ni 0.778 0.612 0.504

7 Cr 0.928 0.776 1.041INi 0.743 0.591 0.495

8 Cr 1.109 0.977 1.055
Ni 0.582 0.524 0.497
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Table lZ Average percentage error in analytes 1 and 2 when
qantitation is pqrformed by ordinary least squares regression,

Perpendicular projection, and extreme vertex projection methods.
OLS PP EVP

Anal 1 Anal 2 Anal 1 Anal 2 Anal 1 Anal 2
All 210 2.10 9.56 0.11 7.47 2.04 8.05

Compound
Group
A -10.99 21.52 -13.34 19.22 -6.49 16.01
B 7.90 3.83 5.96 2.03 3.46 6.60
C -3.86 15.33 -5.73 12.93 -3.31 13.08
D 11.13 1.04 9.36 -0.53 9.65 0.56

-E 10.97 1.48 9.11 -0.22 10.43 0.74
F -2.48 14.17 -4.68 11.37 -1.53 11.18

Relative
Amount
10:1 -0.65 28.53 -1.66 25.83 -1.33 29.48
5:1 0.71 15.56 -1.41 13.25 -1.17 14.65
2:1 0.88 7.74 -1.00 5.97 -0.70 5.95
1:1 1.16 5.20 -0.70 3.31 -0.07 3.16
1:2 1.65 3.93 -0.19 2.05 1.10 1.78
1:5 3.45 3.11 1.51 1.15 5.01 0.78
1:10 6.18 2.86 4.24 0.88 11.42 0.51

j Background
0.5% 0.36 1.43 -0.70 0.41 -0.13 0.38
1.0% 0.64 2.94 -0.54 1.83 -0.29 1.85
2.0% 1.30 5.91 -0.19 4.50 1.07 4.72
4.0% 2.68 12.18 0.40 9.87 2.97 10.70
9.0% 5.51 25.35 1.58 20.71 6.16 22.59
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Table 3: Summed absolute values of the percentage error for 36
qimulated mixtures (20 averaged replicate measurements) from data set
1.

Measurement Noise
0.5% 1.0% 2.0% 4.0%

Back-
ground PP EVP PP EVP PP EVP PP EVP

0.2% 0.12 0.05 0.60 0.47 1.36 1.20 3.88 3.21
0.5% 0.35 0.45 0.43 0.25 0.86 0.69 3.52 2.79
1.0% 0.95 1.19 0.69 0.90 0.53 0.42 1.96 1.48
1.5% 1.70 2.00 1.40 1.65 1.07 0.87 1.02 0.68
2.0% 2.08 2.65 2.10 2.46 1.38 1.62 1.89 0.26
3.0% 3.44 4.22 3.30 3.96 2.67 3.13 1.95 1.67
40% 4.66 5.65 4.68 5.63 3.91 4.68 3.02 3.47
6.0% 7.31 8.67 7.13 8.60 6.65 8.01 6.02 7.08
8.0% 9.87 11.78 9.82 11.67 9.45 11.28 8.60 10.12

I!
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Figure 1. The positions of the two pure spectra, A and B, the mixture

spectrum, X, and the constraint lines defining the non-negative

response region for the analysis of a hypothetical two analyte

plus background mixture. The shaded region indicates the

allowed region within which the pure spectra of the background

component must lie.

Figure 2. The image X of the mixture point is obtained by poriection of

the rotated mixture point, X, along the axis drawn from the pure

background spectrum, C, onto the line segment AB connecting the

two pure analytes.

Figure 3. The perpendicular (solid line) and extreme vertex (dashed line)

projections for the estimation of the fraction of the mixture

response due to the background component.

Figure 4. Pure spectra of aqueous metal ion calibration solutions, a)

chromium ion, b) nickel ion, c) cobalt ion, and d) copper ion.

Figure 5. Absorption spectra of mixtrures 1-8 (labeled a to h,

respectively) for the metal ion samples described in table 2.

In mixtures 2-8, containing an added background, the dotted line

indicates the response which would be observed for the same

mixture in the absence of the background component.
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Figure 6. Scaled distance from the observed mixture spectrum to the ideal

model as a function of the background added. (0-5 replicate

measurements, A-10 replicate measurements, 0 -20 replicate

measurements) The solid lines represent the threshold, 2*u,

above which a background can be defected. The RSD of the noise

in the simulated mixture is: a) 0.5%, b) 1.0%, c) 2.0%, d) 4.0%.
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